Rekenen en wiskunde (voor de liefhebbers)

Gebruikersavatar
refo
Berichten: 21894
Lid geworden op: 29 Dec 2001, 12:45

Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor refo » 09 Jun 2011, 12:24

Toen ik in de 6e klas zat (groep 8 in 2011-taal) moest ik de volgende sommen oplossen.
Ik merk dat dat niet meer onderwezen wordt.

Bereken de G.G.D en het K.G.V. van 264 en 792.
(De bedoeling was dat je gebruik maakte van 'ontbinden in factoren.)

Zijn er mensen die weten hoe je dat oplost?
Laatst gewijzigd door refo op 09 Jun 2011, 12:40, 1 keer totaal gewijzigd.

Gebruikersavatar
helma
Berichten: 17184
Lid geworden op: 11 Sep 2006, 10:36
Locatie: Veenendaal
Contact:

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor helma » 09 Jun 2011, 12:27

refo schreef:Toen ik in de 6e klas zat (groep 8 in 2011-taal) moest ik de volgende sommen oplossen.
Ik merk dat dat niet meer onderwezen wordt.

Bereken de G.G.D en het K.G.V. van 264 en 812.
(De bedoeling was dat je gebruik maakte van 'ontbinden in factoren.)

Zijn er mensen die weten hoe je dat oplost?


de 6e klas was de laatste klas dat ik nog iets snapte van rekenen.
Had nog een 9 op mijn raport
Vanaf die tijd ging het mis.
Inmiddels kan ik niet eens meer getallen onthóuden; laat staan er nog iets mee doen

Gebruikersavatar
MarthaMartha
Berichten: 13050
Lid geworden op: 21 Nov 2007, 22:04
Locatie: Linquenda
Contact:

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor MarthaMartha » 09 Jun 2011, 12:27

voor mij abracadabra
Als de moed je in de schoenen zinkt, ga dan eens op je kop staan!

Gebruikersavatar
refo
Berichten: 21894
Lid geworden op: 29 Dec 2001, 12:45

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor refo » 09 Jun 2011, 12:39

Ik pas de som wat aan.
De getallen zijn niet zo handig gekozen.

Cantate
Berichten: 216
Lid geworden op: 04 Jul 2009, 12:03

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor Cantate » 09 Jun 2011, 13:01

refo schreef:Ik pas de som wat aan.
De getallen zijn niet zo handig gekozen.


Zowel 264 als 792 zijn te verdelen in de priemgetallen 2, 3 en 11: 264 = 2x2x2x3x11 en 792 = 2x2x2x3x3x11.

Grootste gemene deler is dus 2x2x2x3x11 = 264.

Het kleinste gemene veelvoud is daardoor 264 x 792 : 264 = 792.

Marieke
Berichten: 1317
Lid geworden op: 29 Nov 2010, 23:47

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor Marieke » 09 Jun 2011, 13:07

Cantate schreef:
refo schreef:Ik pas de som wat aan.
De getallen zijn niet zo handig gekozen.


Zowel 264 als 792 zijn te verdelen in de priemgetallen 2, 3 en 11: 264 = 2x2x2x3x11 en 792 = 2x2x2x3x3x11.

Grootste gemene deler is dus 2x2x2x3x11 = 264.

Het kleinste gemene veelvoud is daardoor 264 x 792 : 264 = 792.


Je bent me net voor met het antwoord... :oO :bobo :yahoo

Cantate
Berichten: 216
Lid geworden op: 04 Jul 2009, 12:03

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor Cantate » 09 Jun 2011, 13:09

Marieke schreef:
Cantate schreef:
refo schreef:Ik pas de som wat aan.
De getallen zijn niet zo handig gekozen.


Zowel 264 als 792 zijn te verdelen in de priemgetallen 2, 3 en 11: 264 = 2x2x2x3x11 en 792 = 2x2x2x3x3x11.

Grootste gemene deler is dus 2x2x2x3x11 = 264.

Het kleinste gemene veelvoud is daardoor 264 x 792 : 264 = 792.


Je bent me net voor met het antwoord... :oO :bobo :yahoo


Sorry.

Gebruikersavatar
parsifal
Berichten: 7038
Lid geworden op: 09 Jan 2002, 11:15
Locatie: Stockholm

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor parsifal » 09 Jun 2011, 13:28

GCD[264,792] in Mathematica :)
Dit komt ongeveer neer op breuken vereenvoudigen en in dit geval zag ik ook dat 264/792 =1/3. Dat maakt het allemaal wat makkelijker.

De methode die ik meestal gebruik is om factoren die ik metten zie weg te delen. Bijvoorbeeld:
264/792 = (22*12)/(66*12) = (22*12)/(3*22*12)
"Then he isn't safe?" said Lucy.
"Safe?" said Mr. Beaver. "Don't you hear what Mrs. Beaver tells you? Who said anything about safe? "Course he isn't safe. But he's good. He's the King, I tell you."

Gebruikersavatar
refo
Berichten: 21894
Lid geworden op: 29 Dec 2001, 12:45

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor refo » 09 Jun 2011, 13:32

Cantate schreef:
refo schreef:Ik pas de som wat aan.
De getallen zijn niet zo handig gekozen.


Zowel 264 als 792 zijn te verdelen in de priemgetallen 2, 3 en 11: 264 = 2x2x2x3x11 en 792 = 2x2x2x3x3x11.

Grootste gemene deler is dus 2x2x2x3x11 = 264.

Het kleinste gemene veelvoud is daardoor 264 x 792 : 264 = 792.


Dat 'dus' moet nog verklaard worden.
Evenals de berekening van het KGV.

Gebruikersavatar
huisman
Berichten: 13742
Lid geworden op: 13 Nov 2009, 00:38

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor huisman » 09 Jun 2011, 13:35

refo schreef:Toen ik in de 6e klas zat (groep 8 in 2011-taal) moest ik de volgende sommen oplossen.
Ik merk dat dat niet meer onderwezen wordt.

Bereken de G.G.D en het K.G.V. van 264 en 792.
(De bedoeling was dat je gebruik maakte van 'ontbinden in factoren.)

Zijn er mensen die weten hoe je dat oplost?


Tegenwoordig mag je al blij zijn als ze (de kinderen en de meesters en juffen) de tafels kennen in groep 8.

( mijn oplossing is altijd hetzelfde 792:264 = 3 verbonden ...of heb ik de som niet begrepen :huhu )
Er gaan er met twee verbonden verloren en met drie en er worden er met twee verbonden behouden en met drie. Prof. G. Wisse.

Gebruikersavatar
Auto
Berichten: 4534
Lid geworden op: 22 Feb 2002, 21:01

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor Auto » 09 Jun 2011, 13:37

Mensen gaarne ontopic blijven! Hier kan je lezen en leren en natuurlijk meedoen ...... en niet om om eigen uitkomsten verkeerd dogmatisch te verklaren.

Cantate
Berichten: 216
Lid geworden op: 04 Jul 2009, 12:03

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor Cantate » 09 Jun 2011, 13:44

refo schreef:
Cantate schreef:
refo schreef:Ik pas de som wat aan.
De getallen zijn niet zo handig gekozen.


Zowel 264 als 792 zijn te verdelen in de priemgetallen 2, 3 en 11: 264 = 2x2x2x3x11 en 792 = 2x2x2x3x3x11.

Grootste gemene deler is dus 2x2x2x3x11 = 264.

Het kleinste gemene veelvoud is daardoor 264 x 792 : 264 = 792.


Dat 'dus' moet nog verklaard worden.
Evenals de berekening van het KGV.


Het grootste gehele getal waardoor zowel 264 als 792 deelbaar zijn is 264 = GGD.

Het kleinste veelvoud van zowel 264 als 792 is 264, namelijk respectievelijk 1x en 3x. Als er geen gezamelijke priemgetallen zijn, dan is het KGV gewoon het product van beide getallen. De grootste gemene deler is dan 1. Bijvoorbeeld 9 en 20. GGD = 1 en KGV = 180.

Gebruikersavatar
refo
Berichten: 21894
Lid geworden op: 29 Dec 2001, 12:45

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor refo » 09 Jun 2011, 13:48

Cantate schreef:
refo schreef:
Cantate schreef:
refo schreef:Ik pas de som wat aan.
De getallen zijn niet zo handig gekozen.


Zowel 264 als 792 zijn te verdelen in de priemgetallen 2, 3 en 11: 264 = 2x2x2x3x11 en 792 = 2x2x2x3x3x11.

Grootste gemene deler is dus 2x2x2x3x11 = 264.

Het kleinste gemene veelvoud is daardoor 264 x 792 : 264 = 792.


Dat 'dus' moet nog verklaard worden.
Evenals de berekening van het KGV.


Het grootste gehele getal waardoor zowel 264 als 792 deelbaar zijn is 264 = GGD.

Het kleinste veelvoud van zowel 264 als 792 is 264, namelijk respectievelijk 1x en 3x. Als er geen gezamelijke priemgetallen zijn, dan is het KGV gewoon het product van beide getallen. De grootste gemene deler is dan 1. Bijvoorbeeld 9 en 20. GGD = 1 en KGV = 180.


Dat zijn allemaal wetenswaardigheden.
Het gaat nu om de som.

1. Hoe kom je achter de GGD van de twee getallen.
2. Hoe kom he achter het KGV van de twee getallen.
In beide gevallen gebruik maken van ontbinden in factoren.

Niet gebruik maken van het timmermansoog (parsifal)
Niet gebruik maken van sluipweggetjes. (cantate)

Gebruikersavatar
parsifal
Berichten: 7038
Lid geworden op: 09 Jan 2002, 11:15
Locatie: Stockholm

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor parsifal » 09 Jun 2011, 13:55

refo schreef:
Dat zijn allemaal wetenswaardigheden.
Het gaat nu om de som.

1. Hoe kom je achter de GGD van de twee getallen.
2. Hoe kom he achter het KGV van de twee getallen.
In beide gevallen gebruik maken van ontbinden in factoren.

Niet gebruik maken van het timmermansoog (parsifal)
Niet gebruik maken van sluipweggetjes. (cantate)


Mijn tweede methode was geen timmermansoog methode. (buiten het priemfactoren vinden, maar dat is sowieso lastig)

Je kunt ook het algoritme van Euclides gebruiken: http://nl.wikipedia.org/wiki/Algoritme_van_Euclides

en dan opmerken dat ggd(a,b) * kgv(a,b) =a*b

Echter bij het algoritme van Euclides moet je wel goed opletten dat je begrijpt waarmee je bezig bent (dus: waarom werkt het?)
"Then he isn't safe?" said Lucy.

"Safe?" said Mr. Beaver. "Don't you hear what Mrs. Beaver tells you? Who said anything about safe? "Course he isn't safe. But he's good. He's the King, I tell you."

Cantate
Berichten: 216
Lid geworden op: 04 Jul 2009, 12:03

Re: Rekenen en wiskunde (voor de liefhebbers)

Berichtdoor Cantate » 09 Jun 2011, 14:01

Nou ja, ik maak helemaal geen gebruik van sluipweggetjes, maar ik ontbind de bedragen juist in factoren. De gezamenlijke factoren zijn namelijk 2, 3 en 11 en wel driemaal de 2, eenmaal de 3 en eenmaal de 11, wat dus wordt 2x2x2x3x11 = 264.
264 is daarom de GGD: 264 kun je eenmaal door 264 delen en 792 driemaal.

De KGV bereken je vervolgens (zo is nu eenmaal de regel) door de beide getallen met elkaar te vermenigvuldigen en te delen door de GGD: 264 maal 792 gedeeld door 264 is 792.

QED


Terug naar “Vrijetijdsbesteding”

Wie is er online

Gebruikers op dit forum: Geen geregistreerde gebruikers en 2 gasten